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●✎ In this paper, wewlll present adet~iled analysis of the way in

which resonances may affect the angular distribution of the products

of reactive collisions. To do this, we have used an approximate

“three-dimensional(3D) quantum theory of reactive scattering (the

Rotating Linear Model, or RLM) to generate the detailed scattering

information (S-matrices) needed to compute the angular distribution

of reaction products. We also employ a variety of tools, notably

lifetime matrix analysis, to characterize the importance of a

resonance mechanism to the dynamics of reactions. As a

hope to gain insight into how the resonant component of

result, we

the

scattering mechan’

reaction products

systems, F+H2 and

sm is manifested in the angular distribution of

Applications of these techniques to two reactive

He+H2+, will be reviewed.

The Rotating Linear Model

The study of quantum effects such as resonances in atom-molecule

reactions has been largely confined to coupled-channel calculations

for collisions constrained to collinear geometries. Progress In

quantum reactive scattering techniques Is reviewed periodically

). A few three dimensional (30) quantum calculations of

reactions, some more approximate (5-21) than others (22-23)9

seen resonance features in reaction dynamics, and with the

increasing sophistication and sehsitlvity of molecular beam

experiments (24-27), it has become evident that the angular

Sfmple

have

distribution of reaction products is llkely to be the most sensltlve

observable manifestation of resonant contributions to reaction

mechanisms.
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Coupled channel methods for collinear quantum reactive

calculations are sufficiently well developed that calculations can

be performed routinely. Unfortunately, colllnear calculations

cannot provide any insight Into the angular distribution of reaction

products, because the impact

probabilities is undefined.

3D methods for atom-molecule

parameter dependence of reaction

On the other hand, the best approximate

reactions are computationally very

intensive, and for this reason, it is impractical to use most 3D

approximate methods to make a systematic study of the effects of

potential surfaces on resonances, and therefore the effects of

surfaces on reactive angular distributions. For this reason, we

have become interested in an approximatemodel of reaction dynamics

which was proposed many years ago both by Child (28), Connor and

Child (29), and by Wyatt (30). This Rotating Linear Model (RLM) of

reactions is in some sense a 3D theory of reactions, because the

line upon which reaction occurs is allowed to tumble freely in

space, A full three-dimensionaltheory would treat motion of the

SIX coordinates (in the center of mass) associated with the two

vectors ; and ~ khich specify the Internuclear diatomic axis and the

atom-molecule separation respectively. In a space-fixed frame,

these vectors halvepolar coordinates (r,e’,$’) and (R,O,$), In the

RLki,ttiodegrees of freedom are eliminated by requiring the polar

coord~nates of the ; and $ vectors to ~~inc~de. The Hamiltonian for

this system treats the four degrees of freedom associated with the

coordinates (R,r,e,$). As a model for angular distributions for
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reactive collision dynamics, the RLM possesses two attractive

features. First, the angular degrees of freedom are handled in a

. partial wave expansion in the total angular momentum Index ~, tiich

introduces an impact parameter Into the theory. Second, the RLM

coupled-channel equations for each partial wave, *en expressed in

either Cartesian, polar, or hyperspherical coordinates, are

identical to those of a purely CO1linear formulation, with the

addition of an effective centrit’ugalpotential

V~LM(r,R) = h2 ~~(fi+l)+Il
2!,(R2+r2)

(1)

to the collinear potential energy surface for reaction.

Consequently, the solution of the reaction dynamics in the RLM is

only as difficult in practice a; solving a fanily of collinear

problems, one for each partial wave. In enforcing asymptotic

boundary conditions, we use spherical Bessel functions and ignore

the centrifugal zero-point

The obvious defect of
+
r vector relative to the ~

motion l/(R2+r2) In Equation 1.

theRLM is that it neglects motion of the

vector. Asymptotically, the neglected

degrees of freedom descrlbs the rotational motion of the diatomlc,

and in the interaction region, describ~ ~he internal bending of the

colllslon complex. Since the model only samples the collinear
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projection of the entire potential hypersurface, one would expect

RLM to be most reliable for those reactions which proceed through

strongly hindered linear collision intermediates. In order to

improve the quantitative aspects of the dynamics, especially in the

reaction threshold region, we have added a bending correction to the

RLM, in the same spirit as described earlier (31-34) for other

models. The model thus generated is called the Bending Corrected

Rotating Linear Model (BCRLM), and the results we describe here will

all be derived from this model. The details of the bending

correction are described in an earlier publication (35).

In a series of recent papers (35-38), we have used the BCRLM to

examine the manifestation of resonances for several reactions,

including

F+Hz(v) + AF(v’) +Ii

I++$(v) + H2(v’) + H

and several of their isotopic variants. In ihese papers, we have

considered the importance of quantum effects, especially resonances,

upon integral and differential cross sections and upon rate

constants for these reactions. The hope is that these approximate

results contain many of the important features of the me accurate

theoretical methods. At any total scattering energ,yE, elements of
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the multichannel S-matrix in theRLM are labelled by the total

angular momentum index Z, and by the initial and final vibrational

quantum numbers v and v’. Equations for physical observable in the

RLM have been given previously (28-30), and we only sumnarize the

final results here, in

opacity function gives

reaction probabilities

order to establish a conmnonnotation. The

the impact parameter dependence of the

at fixed E, so that

P:VI(E)= ls;vt(E)12 , (2)

where the impact parameter is related to the angular momentum index

by the semiclassical expression bk = (1+1/2), and k is the

translational wavenumber. The angular distribution of products of

reaction Ivvl(e) is the differential cross section

davv,(O,$;E)/dO = lfvv(0,$;E)12a IvV,(e)

where the scattering amplitude is

fvv,(e,$;E) u (2ikv)-1 ~ (2&+l)(6vv,-S~v(E))Pt(cosO)
R

The Integra’sd cross section is

~vv,(F) ● 2~ j I(e)slnede = wk-2 ~ (2RT1)F$V,(E)
8

(3)

(4)

(5)

Al1 angular d’lstrlbutlonsr?ported in this paper are calculated

using Equations (3) and (4) above. However, in interpreting fea-

tures of the angular distribution, it is often Instructive to appeal

to the elements of the classical formula for angular distributions
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b Pvv,(b)
IvV,(e) =

‘~#,
(6)

In Equation (6), e(b) is the classical deflection function, and

specifies the angle e at which the particles separate after a

collision at an initial impact parameter b. The deflection function

has the quantum analog

where Arg(z) is the phase angle of the complex number

(3), (4), (6) and (7) make it clear that the shape of

distribution of reaction products depends both on the

phases of the elements

Analysis of Resonances

Resonances modify what

of the S-matrix.

(7)

z. Equation

the angular

magnitudes and

would have otherwise been the energy and

impact parameter dependence of

S-matrix element”. Resonances

angular distribution function.

the phases and magnitudes of the

therefore alter the shape of the

Kuppermann (39) has recently

reviewed many of the tools which can be used to characterize

‘resonancesIn single and multichannel problems. The andlysls of

resonances In a multichannel problem is simplest If one assumes

(41-46) the Isolated narrow resonance conditions (INR), In which a

resonance is due to a single simple pole of th~ S-matrix located at

energy E ● ER-11’/2in the Complex plane. It Is assumed that the
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background or direct component of the scattering has a nwch slower

energy dependence than the resonant component, which is equivalent

to requiring that the resonance width r be small, and that the pole

lie close to the real axis. The slowly varying background

contribution condition will be compromised if there is either a

channel threshold near the resonance energy ER, or if there are

new

other nearby (overlapping)resonances.

The effect of resonances on angular

scattering can be effectively modeled if

distributions in reactive

one can successfully

separate the multichannel S-matrix into its background and resonant

components, so that

‘=SO+SR ‘ (8)

where it will be understood in what follows that this analysis is

done at each partial wave index ~. Invoking the INRconditions,

Equation 8 can be written in a generalization of the single-channel

Breit-Vigner form

(9)

with Z=@iS/2. For N open channels, culumn vector~is composed

of N real numbers, such that yTY=I’. Comparing Equations (8) and

(9) makes it clear that the complete characterization of the

resonant and background parts of the S-matrix requires knowledqe of

the resonant partial widths (Sol/2y), where

(10)



All resonances are necessarily characterized by the lifetime of the

compound state, and Smith’s (47) definition of the lifetime matrix—

. is

Q=ihS# (11)

If we substitute Equation (7) into Equation (11), we obtain a direct

expression for Q in the vicinity of the resonance

1/2 1/2 ,*
h(so Y)(SO Y)

Q = (E-ER)Z + r2/4
(12)

In deriving Equation (12), we have assumed So to be independent of

E. It is also convenient to express Q as

hr
Q = (E-ER)2 + r2/4

where the unit vector w is

~ * r-1/2#2y
o

t (13)

(14)

Equation (13) tells us two things about the lifetime matrix near an

INR: (1) the trace of~ has the expected single-channel

Lorentzian form

Trace (Q) = hr
(E-ER)2 + rz/4

(15)

and (2) that all the elgenvalues of Q are zero except for one (Q is

a rank i matrix). Furthermore, the eigenvector of Q corresponding
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ideaily to the nonzero elgenvalue is the unit vector wdefined in

Equation (14). Combining Equation (14) and (10) gives a direct

expression for SR in terms of the appropriate eigenvector of Q,

namely

. ir~T
‘R E-ER + ir/2

(16)

Combining Equation (16) with Equation (8) allows a determinat~on of

the background S-matrix So, and from So at each parbial wave one

can calculate the angular distribution in the absence of a

resonance, Equation (3). In practice, the breakdown of the INF/

conditions, especially the energy dependence of So, compromises

the practical application of the preceding discussion, but as we

hope to show, the scheme outlined nevertheless seems quite useful in

analyzing resonances.

Resonance Effects On Quantum Deflection Functions

In a recent paper (37) we explored the effects of resonances on the

phase behavior of individual elements of the S-matrix, with

particular attention paid to the quantum deflection function,

defined in Equation (7). Following in the spirit of Child’s (43)

analysls, we assume the pwtial wave dependence of the resonance

energy to be

$@ = ER(0) + Bfl(~+l) (17) “’
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and further assume the resonance width has a quadratic dependence on

i

rg = ro(l+a%+bg2) (18)

If we then assume that the phase behavior of a single off-diagonal

element of the S-matrix is

#

Vv‘ = 6~v,(background) + L!:v,(resonant) ,

rt/2
tan d~v,(resonant) = F7 ‘b

(19)

(21j

then Equations (17-21) lead to the following expression for the

behavior of the quantum deflection function near a resonance,

rO(a+2b%)(ER-E) - B1’t(2~+l)
~vv,(~) = O:vl(%) ++

(ER(fl)-E)2+ r:/4
(22)

Note in Equations (19)-(22)that there is a factor of two difference

assumed in the dependence of the off-diagonal resonant phase

behavior from that of single channel behavior. This assumptlorl

follows from Equation (9). In an earlier paper (37), we showed thet

Equation (22) (with a=b=O) was remarkably good in modelinq the

resonant behavior of the deflection functiol~.

Application to Angular Distributions

In this section, we present an application of the techniques

described In the previous sections to the angular distribution for

the reaction
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F+H2(v’=0) + HF(v’=2)+ii

A series of calculations, using the BCRLM, was performed on the

“M5 surface (~), as reported earlier (~). Here wewlll concentrate

“ on the angular distribution at a fixed total energy E=l.807 eV

(measured from the minimum of the HF vlbrational potential for

asymptotic H+HF geometries). The initial relative kinetic energy of

reactants at this total energy Is 0.162 eV (or 3.73Kcal/mol). We

show the impact parameter dependence of the magnitudes and phases of

the appropriate elements of the S-matr+x in Figures (1) and (2).

Figure (1) shows the opacity function, Po2(~) vs. $!(see

Equation (l)), and Figure (2) shows the quantum deflection function

Q02(L) vs. 1 (see Equation (7)). The presence of a resonant

contribution to the reaction mechanism ‘

deflection function over the range of t

is also manifested In the opacity funct’

significant enhancement (see later) of

s evident as a dip In the

values 12-20, The resonance

on of Figure (1) as a

the reaction probability

over the same range of t values. The angular distribution which

results from these S-matrix elements Is shown +n F~gure 3,

Let us now analyze the resonance contribution to this angular

dtstrlbutlon more closely. From Figure 2 it is evident that at

E=l.807°eV, the resonant contribution to the d~flection of products

is greatest near 4=16. We ther~fore show In Figure 4 a plot of the,

elgenvalues of the 2=16 Ilfetlme matrix (Equation (11)) as a func-

tion of totalenergy E. Over this rangeof total energies, there are

are five open channels In the S-matrix (v=O ot reactants

v’M0,1,2,3 of products). It Is clear In Flgure4 that a

shaped feature Is Indeed centered near E=l.807 eV In one

and

Lorentzlan

of the
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eigenlifettme channels. If this feature Is fitted totheforrn of

Equation (17), with a quadratic background behavior, the resonance

energy ER(16) and width 1’16can be determined. Values of ER(~)

and r~ for other ~ values are detemined stmllarly. In Figure 5,

we show a plot of the energy dependence of the magnitudes of the

elements of the eigenvector of Q corresponding to the eigenvalues

with the Lorentzlan profile. These ?re related to the partial

widths by Equation (14). Figures 4 and 5 give an indication of the

degree of validity of the INRconditions for this problem. Although

one of the eigenlifetime channels shows the resonance feature much

more strongly than the others, the other eigenvalues are neither

zero over the width of the resonance, nor are they even constant,

Similarly, In Fig. 5, we see that the resonant partial widths are

not necessarily slowly varying with energy over the width of the

resonance,

Using tfiedata of Figure 5to generate

calculate the resonant part of the S-matrix

the background S-matrix using Equation (8),

$ thew vector in Equation (16) come from the
*
4 calculated using Equation (11), we obtain w

e-iQo Possible choices of @ are determined

the partial widths, we

using Equation (16), and

Because the elements of

dlagonallzatlon of Q

with ~n arbitrary phase

by requiring the

background S-matrix S0 be unitary (In addition to being

symmetric). At energies E=ER(8), only one value of @makes S0

unitary, and at other values of E, there are two values of E which

suffice. The physically satisfactory root fs the one for which the

resonant behavior of S0 is eliminated (the other root tends to

accentuate the resonance). An exampl~ of this procedure is

demonstrated in Figure 6, where we have plotted lS#, (E)l VS* E.
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The solid line shows the magnitudes of the full S-matrix elements, ‘

the solid circles show the background S-matrix elements

corresponding to the physical root, and the open circles show

background S-matrix elements corresponding to the nonphysical root,

Assembling the magnitudes of the background S-matrix elements

for the physical roots at all partial waves from @Oto 18, we

,,constructthe background opacity function shown as the solid curve

in Figure 7, at E= 1.807 eV. The large dip in this opacity

function near ~=12 is the result of the crossing of two eigenvalues

of the lifetime matrix in this range of E and E. The crossing

eigenvalues induce interacti,~nsbetween the eigenvectors and perturb

the calculation of the background S-matrix. Consequently, we have

also used the opacity function given by the dashed line in Figure 7

to produce an estimate of the background angular distribution.

Furthermore, because of the practical difficulties with the

determination of the magnitudes of the background S-matrix elements,

we elected not to use the phases determined in this manner, but to

use phases from the deflection function anal,vsisdescribed earlier.

Tne sst’of resonance energies Is reasonably described by the form of

Equation (18) with ER(0) = 1.7234 eV and B = 3.05x10-4 eV, and the

l-dependence of the widths Is adequately described by Equation (18)

with I’O= 0.031 eV, and a=b=3.11x10-3, We then use Equation

(22) to produce the background deflectiu~ function O!v, (l),and we

show results in Figure 8 as the solid curve. The dashed curve is

the full deflection function of Ftgure 2, shown for compiwison.

Phases of the background S-matrix elements are determined, up to an

unimportant constant, by Integrating e~vl(~), Having determined a

,,’’.~,~,,,
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set of background S-matrix elements, we calculate an angular

distribution due to the background scattering, shown In Figure 9 as

the solid curve. The dashed curve shows the angular distributicilof

using the smoothed opacity function of Figure 7, and the dotted

curve reproduces the distribution of Figure 3 for comparison.

The efff?ctof the resonance contribution to the ang~,lar

distribution in Figure 9 is twofold. The resonance (1) enhances the

intensity of the sideways peak, and (2) the position of the sideways

peak is shifted toward the forward direc?ion by approximately 20”,

an additional deflection which quantitatively agrees with the size

of the dip In the deflection function shown in Figure 8. There is

also a small reduction in the interference oscillations in the

furward direction. It is significant to ncte, however, that t-he

background angular distribution is sideways peaked, as a consequence

of the generally increasing tendency of the opacity functions of

4Figure 7 at 1 %.
●

Forward Peaked Angular Distributions

In the remainder of this paper, we wish to consider the conditions

which my lead to bruod, or even forward-peaked, angular

distributions of products at the reaction threshold. Such angular

distributions have been observed in recent F+H2 beam experiments

. (~7.),and within the context of the ECRLM, we have observed this

phenomenon in several systems.

F+HZ. We see this sort of behavior in the reaction F+Hz(v=O) *

HF(v’D2)+H on a modification of the M5 potential surface due to

Truhlar, Garrett, and Blats (~). Tnis modified surface differs
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from the MS surface in the following three qualitative ways: (1)

the new surface has a lower collinear barrier to reaction, (2) has a

softer bending potential in the entrance valley, and (3) has a much

lower adiabatic barrier in the exit valley for reaction into the

HF(v’=3) final state.

We show in Figures 10 and 11 a plot of the reactive

probabilities for this system, for reactions into HF(v’=2) and

HF(v’=3) respectively. While the qualitative shape of the

probability curves for reaction to HF(v’=3) resembles that of theM5

potential surface, there is an obvious difference in

leading to HF(v’=2) products. At low partial waves,

into HF(v’=2) is suppressed relative to the M5 case,

the dynamics

the reaction

and at larger

partial waves, there is an obvious onset of resonance dynamics.

Presumably, the exit valley adiabatic barrier wh~ch Is pr ;ent in

the MS surface, but has been removed in this newer surface, Is

replaced by a similar (but centrifugal) barrier at intermediate

partial waves, thereby restoring the resonance mechantsm. The

effect on angular distributions is obvious, Figure 12 shws opacity

function plots at several energies, and Figure 13 shows the

corresponding angular distribution plots. The resonant mechanism fn

this case is considerably stronger than for the correspondingM5

calculation, and the effect on the angular distributions is to

induce much stronger interference oscillations, since there are many

fewer partial waves contributing significantly to the reaction, In

the case of the reaction to produce HF(v’Q3) on this surface, it is

evident that the v’=3 state of products particip~tes more stronqly
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In the resonance mechanism, as can be seen In the angular

distribution plots of F4gure 14. The angular dlstrlbutlon shifts

from backward to sideways peaked, and has noticeable interference

oscillailons at all erergieso

The F+H2 r~actlon on this newer potential surface demonstrates

one way in which the BCRLM will produce an angular distribution at

the reaction threshold which Is not smooth and backward-peaked. In.4

this case, the absence of a significant reaction probability for low

partial waves, and the appearance of a resonance feature at larger

partial waves, combine to produce an opacity function which peaks at

large partial waves, and hence an angular distribution which has a

predominant forward distribution of reaction products. We have seen

results similar to these in the angular distribution for the

reactions F+D2(v=O) + DF(v’=3,4)+11on this same surface.

W!& We performed a set of 6CRLM calculations for the reaction

He+H2+ +HeH{+H using the DIM representation (Y) of the potential

surface. A great many resonance features have been seen (5i) in

the colllnear reactive dynamics of this system, and many have been

identified with the attractive well which is present on this surface

in the entrance valley. Because the bending potential predicted by

the DIM surface is very weak, the BCRLM dynamics (for’the 2=0

partial wave) resembles that of the collinear calculation. Reaction

probabilities for the reactio$ H8+H2+(v=3) + HeH+(v’~O)+H are shown

In Figure 15 for several partial waves, The predomlnance”of many

resonances in each partial wave is evident in the figure. As

written, this reactlcn Is endothermic by 0.81 eV, but once the
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endothermiclty Is provided by the kinetic energy of reactants, there

is no barrier to the reactive process. Consequently, reaction

occurs from many partial waves at the reaction threshold. There Is

little or no evidence of a centrifugal barrier to reaction

appearing in the dynamics until the 2=15 partial wave. For this

reason the opacity function, at the reaction threshold, contains

contributions from a large number of partial waves, as can be seen

in Figure 16. The resulting angular distributions of products are

therefore quite broad, and show the effects of the nultitude of

resonances through the very oscillatory nature of the distributions,

as is shown in Figure 16. Results similar to these, except for

reaction from other initial vibrational states of the H2+ reactant

molecule, are qualitatively the same -- reaction from many partial

waves at threshold makes possible a very broad angular distribution

of products.

Summary

9

We have attempted to describe here the way in which resonances in

reactive scattering may affect the angular distribution of the

products of reaction. To do this, we have employed a simple 3~

model of reactions, the Bend-Corrected Rotatlnq Linear Model, and

have computed angular distributions for several reactive systems in

whlcb resonances contribute to the scattering dynamics.

The most straightforwardway to determine the effect of

resonances on angular distributions ~s to define a partltlon bf the

nngular d;stribhtion Into its direct and resonant components. We
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described an attempt to do this for the reaction F+H2(v=O) O*

HF(v’=2)+H at an energy where the angular distribution was

. decidedly sideways peaked. In this analysis, we found the effect of

the resonant part of the scattering was to enhance the amplitude of

the sideways peak, and to shift the peak to a more forward angle.

The background angular distribution is still sideways peaked,

b however, lending further support to t’e conclusion which we (36-37).—

and others (52) have made earlier, th~L the presence of a sideways

peak in the angular distribution is not necessarily the signature of

a resonant process.

Me have also sought to describe the conditions under which the

angular distribution of reaction products could be forward-peaked at

the reaction threshold, within the context of the BCRLM. Two

sources of this effect have been seen in our calculations, and the

essential feature which they have in cor,monis that the reaction

must, at thresh~ld, contain contributions from scattering at large

partial waves, In the example shown for the F+H2 reaction on a

modification (49) of this MS surface, a forword peaked distribution

at threshold was seen to result from a resonant mechanism which is

absent in low parti~l waves, and becomes significant for larger

partial waves. In the second example, for the He+H2+ reaction,

forward peaked angular distributions at threshold result from t!w

fact that the reaction proceeds without abarrfer (other than that

resultlng from the overall endothermicity of reaction), In the

He+H2+ reaction, there are indeed many resonances which contribute

to the dynamics, but it Is not clear that the angular distribution

would not be peaked ~n the forward direction evan in the absence of

the resonances.
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FIGURE CAPTIONS

Figure 1. Opacity function, P(t) vs. 1, tor the reaction F+H2(v=O) +

. HF(v’=2)+H at total energy E = 1.807 eV. The peak near &=14 is

characteristic of a resonance contribution to the overall reaction

dynamics.

Figure 2. Quantum deflection function, O(!Z),as defined by Equation

7, for the reaction F+H2(v=O) + liF(v’=2)+Hat total energy

E = 1.807 eV. The dip near 2=16 a manifestation of the resonance

nechanism, because the longer-livedcollision complex rotate” more

toward forward angles.

●

9

Figure 3. Angular distribution, or differential scattering cross

section for the BCRLM reaction F+H2(v=O) + HF(v’=2)+H at total

energy E = 1.807 eV.

Figure 4. Eigenvalues of the C0114

Equation 11) for the2=16 partial

resonance near total energy E = 1

eigenvalues.

sion lifetime matrix Q (see

wave of the F+H2 reaction. The

8 eV is evident in one of the

Figure S, Energy dependence of the magnitudes of the elements of the

eigenvector of Q corresponding to the resondnt eigenvalue, Near the

resonant @nergy E = 1.806 eV, the channels which participate mst in

the resonance dynamics are clearly v=O of the H2 reactants and v’=2

of the HF products.



Figure 6. Magnitudes of background S-matrix elements for the

reaction F+H2(v=O) + HF(v’=2)+H, partial wave 2=16. The solid curve

shows the full S-matrix elements, and the open and filled circles

show two choices of background elements corresponding to the two

phase choices for the partial widths (see text). The open circles

are elements correspondingto a nonphysical root, the closed circles

correspond to the physical root.

Figure 7. 6ackground opacity function for the reaction F+H2(v=O) +

HF(v’=2)+H at E = 1.807 eV. The solid curve is the direct result of

the extraction procedure discussed in the text, and the dashed curve

is a smoothed version.

Figure 8. Background deflection function for the reaction F+H2 +

HF(v’=2)+H at E = 1.807 eV. The solid curve removes the resonance

contribution using Equation (23), The dashed curve reproduces the

full deflection function of Figure 2 for comparison.

Figu4e 9, Background angular distributions for the reaction

F+H2(v=O) + HF(v’=2)+H at E = 1.807 eV. The solio curve used the

opacity function shown in Figure 7 ss a solid curve, and the

smoother, dashed curve shows the angular distribution which results

from the smoothed opacity function of Figure 7. The dotted curve

reproduces the full angular distribution of Figure 3 for comparison,
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Figure 10, Reaction probabilities vs. energy for the reaction

F+H2(V=O) + HF(v’=2)+Hon a recent modification (49) of theM5

surface. Curves are shown for partial waves 2=0,5,10,...30. Note

the resonance feature which builds in at large partial waves.

Figure 11. Reaction probabilities vs. energy for the reaction

F+H2(v=(I) + HF(v’=3)+Hon a recent modification (~) of theM5

surface. Curves are shown for 2=0,5,10,...30. Note Lhe reduced

delay in the threshold for reaction at low partial waves.

Figure 12. Opacity functions for the reaction F+H2(v=O) +

HF(v’=2)+H on a recent modification (~~) of the MS surface. curves

are shown at several scattering energies. Note that almost all the

scattering at each energy arises from only a few, large ~ partial

waves.

Figure 13. Angular distributions for the reaction F+H2(v=O) +

HF(v’=2)+H on a recent modification (49) of the M5 surface. Curves

are shown at the same energies as Figure 12.

Figure 14, As in Figure 13, angular dis$rlbutlon for the reactfon

F+H2(v=())+ HF(v’=3)+H on a recent modification of the M5 surface,

The interference oscillations Indicate that the HF(v’=3) channel

particlpat~s {n the resonance @ynamlcs for this surface.
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Figure 15.

HZ+(V=3) +

. Curves are

Figure 16.

Reaction probabilities vs. energy for the reaction He +

HeH+(v’=O)+Hon the DIM surface of reference (50).

shown for ~=0,5,10,...,3O.

Angular distributions for the reaction He + H2+(v=3) +

tletl+(v’=o)+li. Curves are shown at total energies (measured from the

minimum of the H2+ entrance valley well) E = 1.0, 1.1, 1,2, and

1.3 eV.
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